Publications
【2024年〜の論文】
2025
2024
*Nomura, W., and *Inoue, Y. (2024) Activation of the cell wall integrity pathway negatively regulates TORC2-Ypk1/2 signaling through blocking eisosome disassembly in Saccharomyces cerevisiae. Commun. Biol. 7, 722 (* Corresponding authors)
Takahashi, H., Nishitani, K., Kawarasaki, S., Martin-Morales, A., Nagai, H., Kuwata, H., Tokura, M., Okaze, H., Mohri, S., Ara, T., Ito, T., Nomura, W., Jheng, H. F., Kawada, T., Inoue, K., and Goto, T. (2024) Metabolome analysis reveals that cyclic adenosine diphosphate ribose contributes to the regulation of differentiation in mice adipocyte. FASEB J. 38, e23391
【〜2024年の主要な論文】全ての発表論文についてはコチラ(researchmap)
#Hayashida, M., #*Nomura, W., Shiojiri, A., and *Inoue, Y. (2023) Activation of the DNA damage checkpoint perturbs asymmetric localization of Kar9 to spindle pole bodies in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 685, 149157 (# Equally contributed; * Corresponding authors)
#Ng, S. P., #*Nomura, W., Takahashi, H., Inoue, K., Kawada, T., *Goto, T. and *Inoue, Y. (2022) Methylglyoxal induces multiple serine phosphorylation in insulin receptor substrate 1 via the TAK1–p38–mTORC1 signaling axis in adipocytes. Biochem. J. 479, 2279-2296 (# Equally contributed; * Corresponding authors)
*Nomura, W., Ng, S. P., Takahara, T., Maeda, T., Kawada, T., Goto, T., and *Inoue, Y. (2022) Roles of phosphatidylserine and phospholipase C in the activation of TOR complex 2 signaling in Saccharomyces cerevisiae. J. Cell Sci. 135, jcs259988 (* Corresponding authors)
Ng, S. P., *Nomura, W., Takahashi, H., Inoue, K., Kawada, T., and *Goto, T. (2021) Methylglyoxal attenuates isoproterenol-induced increase in uncoupling protein 1 expression through activation of JNK signaling pathway in beige adipocytes. Biochem. Biophys. Rep. 28, 101127 (* Corresponding authors)
*Nomura, W., Futamata, R., and *Inoue, Y. (2021) Role of RhoGAP Rgd1 in Pkc1 signaling-related actin repolarization under heat shock stress in Saccharomyces cerevisiae. Biochim. Biophys. Acta (BBA)- Gen. Subj. 1865, 129853 (* Corresponding authors)
*Nomura, W., Aoki, M., and *Inoue, Y. (2020) Methylglyoxal inhibits nuclear division through alterations in vacuolar morphology and accumulation of Atg18 on the vacuolar membrane in Saccharomyces cerevisiae. Sci. Rep. 10, 13887 (* Corresponding authors)
Nomura, W., and Inoue, Y. (2019) Contribution of phosphatidylserine to Rho1- and Pkc1-related repolarization of the actin cytoskeleton under stressed conditions in Saccharomyces cerevisiae. Small GTPases 10, 449-455
Ng, S. P., *Nomura, W., Mohri, S., Takahashi, H., Jheng, H. F., Ara, T., Nagai, H., Ito, T., Kawada, T., and *Goto, T. (2019) Soy hydrolysate enhances the isoproterenol-stimulated lipolytic pathway through an increase in β-adrenergic receptor expression in adipocytes. Biosci. Biotechnol. Biochem. 83, 1782-1789 (* Corresponding authors)
Nomura, W., Aoki, M., and Inoue, Y. (2018) Toxicity of dihydroxyacetone is exerted through formation of methylglyoxal in Saccharomyces cerevisiae: effects on actin polarity and nuclear division. Biochem. J. 475, 2637-2652
Nomura, W., Maeta, K., and Inoue, Y. (2017) Phosphatidylinositol 3,5-bisphosphate is involved in methylglyoxal-induced activation of the Mpk1 mitogen-activated protein kinase cascade in Saccharomyces cerevisiae. J. Biol. Chem. 292, 15039-15048
Nomura, W., Ito, Y., and Inoue, Y. (2017) Role of phosphatidylserine in the activation of Rho1-related Pkc1 signaling in Saccharomyces cerevisiae. Cell. Signal. 31, 146-153
Nomura, W., and Inoue, Y. (2015) Methylglyoxal activates target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 35, 1269-1280
Nomura, W., Maeta, K., Kita, K., Izawa, S., and Inoue, Y. (2010) Methylglyoxal activates Gcn2 to phosphorylate eIF2a independently of the TOR pathway in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 86, 1887-1894
Nomura, W., Maeta, K., Kita, K., Izawa, S., and Inoue, Y. (2008) Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: methylglyoxal attenuates protein synthesis through phosphorylation of eIF2a. Biochem. Biophys. Res. Commun. 376, 738-742